合作客戶/
拜耳公司 |
同濟(jì)大學(xué) |
聯(lián)合大學(xué) |
美國(guó)保潔 |
美國(guó)強(qiáng)生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 基于界面張力和表面張力測(cè)試評(píng)估商用UV油墨對(duì)不同承印紙張的表面浸潤(rùn)性差異(二)
> 基于界面張力弛豫法考察羥基取代烷基苯磺酸鹽的界面擴(kuò)張流變性質(zhì)(一)
> 基于黃芪膠、指甲花提取物制備納米天然表面活性劑的界面張力測(cè)量(一)
> ?為什么快速拍擊水面還是會(huì)感到水面很硬?
> 表面活性劑起泡及潤(rùn)濕性能的影響研究
> ?達(dá)因值(表面張力系數(shù))對(duì)材料表面性能的影響
> 表面張力儀鉑金環(huán)、鉑金板兩種測(cè)試方法的不同
> 改性環(huán)氧樹脂乳液型碳纖維上漿劑制備、表面張力、黏度等性能測(cè)試(一)
> 可視化實(shí)驗(yàn)方法研究電場(chǎng)作用下液滴撞擊表面的動(dòng)態(tài)行為(四)
> 最大氣泡壓力法表面張力的測(cè)量原理
推薦新聞Info
-
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
> 界面張力γ、潤(rùn)濕角θ與泥頁(yè)巖孔半徑r關(guān)系(二)
> 界面張力γ、潤(rùn)濕角θ與泥頁(yè)巖孔半徑r關(guān)系(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測(cè)定(二)
> 不同溫度壓力下CO2和混合烷烴的界面張力測(cè)定(一)
> 鹽水上下一樣咸嗎為什么?芬蘭Kibron公司表面張力儀揭曉答案
> 溫度及壓強(qiáng)對(duì)CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
> 溫度及壓強(qiáng)對(duì)CO2-NaCl鹽水系統(tǒng)界面張力的影響(二)
> 溫度及壓強(qiáng)對(duì)CO2-NaCl鹽水系統(tǒng)界面張力的影響(一)
> 表面張力儀分析生物表面活性劑對(duì)菲、1-硝基萘的增溶與洗脫效果和機(jī)制
基于藥液表面張力測(cè)定估算蘋果樹最大施藥液量的方法(二)
來源: 農(nóng)藥學(xué)學(xué)報(bào) 瀏覽 222 次 發(fā)布時(shí)間:2025-04-01
2結(jié)果與分析
2.1不同表面活性劑的表面張力
由圖2可以看出:4種供試表面活性劑的表面張力隨其質(zhì)量濃度的增加而下降,當(dāng)下降到一定值時(shí)趨于恒定。根據(jù)臨界膠束理論,表面活性劑的表面張力的降低僅出現(xiàn)在溶液質(zhì)量濃度小于臨界膠束濃度(cmc)時(shí),當(dāng)溶液質(zhì)量濃度達(dá)到cmc時(shí),表面張力表現(xiàn)為平緩下降或不變。由文獻(xiàn)報(bào)道可知,Tween-80、SDS、Triton X-100和SilwetL-77的cmc分別為3.01×10?2、2.48×10?3、1.32×10?4和8×10?4 g/mL。對(duì)照本研究結(jié)果發(fā)現(xiàn),Tween-80的最高質(zhì)量濃度并未超過其cmc值,SDS、Triton X-100和SilwetL-77的cmc值分別是1×10?3、2×10?4和5×10?4 g/mL。
圖2 4種供試表面活性劑表面張力隨其質(zhì)量濃度變化的趨勢(shì)
2.2不同表面活性劑在蘋果葉片表面的最大持液量
表1為水在不同蘋果葉片傾角下的Rm值,可以看出,生長(zhǎng)前期蘋果葉片近、遠(yuǎn)軸面的Rm值明顯高于生長(zhǎng)后期,其原因可能與葉片表面蠟質(zhì)層分布有關(guān)。有研究表明,隨著葉片的生長(zhǎng)其表面蠟質(zhì)層會(huì)不斷增厚,葉片疏水性逐漸增強(qiáng),且同時(shí)期的遠(yuǎn)軸面的Rm值高于近軸面,其原因可能是蘋果葉片遠(yuǎn)軸面附有大量絨毛,極易刺破水滴表面,使水滴侵入毛刺基地部位,起到阻止藥液流失的作用。
表1水在蘋果葉片近、遠(yuǎn)軸面的Rm值
圖3為不同質(zhì)量濃度下Tween-80溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,生長(zhǎng)前、后期不同傾角下蘋果葉片的Rm值和表面張力均隨Tween-80質(zhì)量濃度的升高不斷減小。當(dāng)溶液質(zhì)量濃度接近c(diǎn)mc時(shí),表面張力基本不變,蘋果葉片Rm值也趨于恒定。
圖3 Rm及表面張力隨Tween-80溶液質(zhì)量濃度的變化
圖4為不同質(zhì)量濃度SDS溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,蘋果葉片近、遠(yuǎn)軸面Rm值和表面張力均隨葉片傾角的增大而減小。當(dāng)SDS溶液質(zhì)量濃度接近和超過cmc時(shí),Rm值趨于恒定。
圖4 Rm及表面張力隨SDS溶液質(zhì)量濃度的變化
圖5為不同質(zhì)量濃度Triton X-100溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。從中可以看出,不同傾角下蘋果葉片生長(zhǎng)前期近、遠(yuǎn)軸面的Rm值和表面張力均隨溶液質(zhì)量濃度的升高而不斷減小,當(dāng)Triton X-100溶液質(zhì)量濃度達(dá)到cmc時(shí),近軸面Rm值與表面張力的變化趨于平緩,而遠(yuǎn)軸面的Rm值則出現(xiàn)大幅波動(dòng)。其原因可能與Triton X-100表面活性效率高(cmc=1.32×10?4 g/mL)有關(guān),同時(shí)溶液色散分量占比會(huì)隨溶液質(zhì)量濃度的升高而提高,而對(duì)蘋果葉片遠(yuǎn)軸面表面自由能起主導(dǎo)作用的也是色散分量,以上多重因素導(dǎo)致遠(yuǎn)軸面的Rm值產(chǎn)生波動(dòng)。蘋果葉片生長(zhǎng)后期Rm與表面張力隨溶液質(zhì)量濃度的變化與生長(zhǎng)前期相似。
圖5 Rm與表面張力隨Triton X-100溶液質(zhì)量濃度的變化
圖6為不同濃度SilwetL-77溶液在蘋果葉片近、遠(yuǎn)軸面的Rm變化規(guī)律。由圖可知,當(dāng)溶液質(zhì)量濃度低于cmc時(shí),蘋果葉片生長(zhǎng)前、后期遠(yuǎn)軸面的Rm值和表面張力均隨溶液質(zhì)量濃度的降低而減小。此外,蘋果葉片生長(zhǎng)后期近軸面只有在30°傾角時(shí)的Rm值與表面張力隨溶液質(zhì)量濃度的提高而減小,60°傾角和90°傾角時(shí)Rm值隨溶液濃度變化不大。蘋果葉片生長(zhǎng)后期遠(yuǎn)軸面Rm值和表面張力隨溶液濃度的變化與生長(zhǎng)前期基本一致。
圖6 Rm值及表面張力隨Silwet L-77溶液質(zhì)量濃度的變化
以上結(jié)果表明,蘋果葉片生長(zhǎng)前期近軸面的Rm值高于生長(zhǎng)后期,且在同一生長(zhǎng)期,蘋果葉片遠(yuǎn)軸面的Rm值遠(yuǎn)高于近軸面。此外,蘋果葉片的Rm值隨葉傾角的增大而減小。