合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 單層膜界面上亞微米顆粒表面張力阻力系數(shù)修正——顆粒在單層膜上的阻力系數(shù)
> 為什么鋼針會漂浮在水面上?
> ?鋰電池涂布工藝缺陷與表面張力有何關系?
> 結合藥液表面張力與蘋果樹冠層參數(shù)預測噴霧藥液用量的方法及應用
> 打破試劑溶液的表面張力,提升乳糖醇制備的攪拌混合效果
> 礦化度對油水兩相混合體系界面張力作用規(guī)律
> 超支化聚合物h-PAMAM水溶液表面張力、動態(tài)界面張力及破乳性能測定
> 來自于液滴的表面張力的靈感,開發(fā)一種在可變的地形上移動的輪子
> 表面張力儀按測量原理分類
> ?強子夸克相變的表面張力數(shù)值變化研究(二)
推薦新聞Info
-
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
> 鹽水上下一樣咸嗎為什么?芬蘭Kibron公司表面張力儀揭曉答案
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(二)
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(一)
> 表面張力儀分析生物表面活性劑對菲、1-硝基萘的增溶與洗脫效果和機制
> 不同濃度6∶2氟調(diào)磺酸的表面張力測定儀器及結果(二)
> 不同濃度6∶2氟調(diào)磺酸的表面張力測定儀器及結果(一)
> 無機鹽濃度對HPAM不同復配體系降低界面張力能力的影響(二)
表面張力儀分析氣潤濕反轉(zhuǎn)劑對緩解煤層水鎖效應、解吸速率影響(三)
來源:煤炭科學技術 瀏覽 246 次 發(fā)布時間:2025-03-25
3試驗結果及分析
3.1接觸角與表面張力測試結果與分析
3.1.1接觸角測試結果與分析
將經(jīng)過不同濃度表面活性劑處理后的煤樣片依次放置在接觸角測量儀的樣品臺,采用蒸餾水作為滴定溶液,分別測定其接觸角,如圖2所示。
圖2接觸角的測定
如圖2所示,F(xiàn)C117和FC134兩種表面活性劑均實現(xiàn)了煤體潤濕性的反轉(zhuǎn)。當表面活性劑濃度從0增加至0.5%時,接觸角逐漸增加,并在溶液濃度為0.5%時,潤濕性由液潤濕向氣潤濕的轉(zhuǎn)變(接觸角大于90°);表面活性劑溶液濃度繼續(xù)增加,接觸角不再增加,維持在一個相對穩(wěn)定的范圍,甚至出現(xiàn)小幅度地下降。出現(xiàn)煤樣接觸角變化規(guī)律的主要原因為
1)當表面活性劑濃度從0增加至0.5%時,F(xiàn)C117和FC134兩種表面活性劑處理后的煤體表面接觸角增加速率較快。在該階段,表面活性劑分子較少,能夠有序的吸附在煤體表面,表面活性劑分子中的親水基團朝著在煤體表面的方向吸附;疏水基團朝著遠離煤體表面的方向,并將抑制周圍水分子在煤體表面的吸附。隨著表面活性劑濃度的增加,煤體表面吸附的表面活性劑分子逐漸增加,疏水基團在煤體表面抑制水分子的能力逐漸提高,煤體表面接觸角也逐漸增大。
2)當表面活性劑濃度等于0.5%時,煤體表面吸附的表面活性劑分子趨于飽和,疏水基團在煤體表面抑制水分子的能力達到頂峰,煤體表面接觸角也逐漸達到最大值;若繼續(xù)增加表面活性劑濃度,多余的表面活性劑分子與正常吸附在煤體表面活性劑分子發(fā)生紊亂,疏水基團之間產(chǎn)生吸附、纏繞,使得多余表面活性劑分子中的親水基團朝向背離煤體表面的方向,對水分子產(chǎn)生吸附作用,進而降低了煤體表面是疏水能力,煤體表面接觸角會產(chǎn)生小幅度地降低。
3.1.2表面張力測試結果與分析
將經(jīng)過不同濃度表面活性劑溶液分別裝至用于滴定裝置的注射器中,利用懸滴法對表面活性劑溶液進行表面張力的測定。每次滴定工作結束之后使用蒸餾水進行多次沖洗,避免測定溶液對待測溶液的結果產(chǎn)生影響,見表2。
表2表面張力的測定
由表2可知,隨著FC117和FC134兩種表面活性劑溶液濃度的增加,溶液的表面張力先迅速降低,再逐漸趨于穩(wěn)定。當表面活性劑濃度從0增加至0.2%時,表面張力從初始的73 mN/m分別降至23.124 mN/m和19.07 mN/m,表面張力大幅度地降低;當表面活性劑濃度從0.2%增加至1.5%時,表面張力變化幅度較小,保持著較小程度的降低,并趨于穩(wěn)定。
綜上分析,對FC117和FC134兩種表面活性劑從接觸角和表面張力兩個方面進行性能測定,兩種表面活性劑均具有疏水性、低表面張力的性能,符合預期的效果。其中,當兩種表面活性劑溶液濃度為0.5%時,可以實現(xiàn)煤樣表面潤濕性的轉(zhuǎn)變,并具有較低的表面張力。因此,在后續(xù)的煤樣解吸試驗中,可將溶液濃度為0.5%的表面活性劑作為對解吸試驗所用的煤樣進行處理的最佳使用濃度。
3.2干燥煤樣解吸特征的結果與分析
根據(jù)2.4節(jié)試驗步驟中的2)~5),其中,2種表面活性劑溶液的使用濃度設置為0.5%。依次對氣潤濕反轉(zhuǎn)劑處理前后的煤樣進行不同吸附平衡壓力條件下的吸附試驗。根據(jù)《煤的甲烷吸附量測定方法》,計算充入煤樣罐中的甲烷量Qci和吸附平衡后剩余空間的游離甲烷量Qdi,其表達式分別為
式中,Qci為充入煤樣罐的甲烷標準體積,cm3;P1i,P2i為分別為充氣前后參考罐內(nèi)絕對壓力,MPa;Z1i,Z2i分別為P1,P2壓力下及t1時甲烷的壓縮系數(shù),1/MPa;t1為室內(nèi)溫度,℃;V0為參考罐及連通管標準體積,cm3;Vd為剩余體積,cm3;t3為試驗溫度,℃;
充入煤樣罐的甲烷量扣除煤樣罐中剩余體積的游離甲烷量即為壓力段內(nèi)煤樣吸附甲烷量ΔQi:
ΔQi=Qci-Qdi(4)
每克煤壓力段內(nèi)的吸附量為
式中,Gr為煤樣可燃物質(zhì)量,g。
通過計算得到氣潤濕反轉(zhuǎn)劑處理前后干燥煤樣在不同吸附平衡壓力條件下的吸附量,如圖3所示。
圖3干燥煤樣吸附量
由圖3可知,隨著甲烷吸附平衡壓力的增加,氣潤濕反轉(zhuǎn)劑處理前后煤樣的吸附量均逐漸增加,且增加量均呈現(xiàn)逐漸減小趨勢。經(jīng)過氣潤濕反轉(zhuǎn)劑FC117和FC134處理后的煤樣吸附量始終小于未處理的煤樣。其中,產(chǎn)生該現(xiàn)象的原因主要為:一方面,氣潤濕反轉(zhuǎn)劑分子自身占有一定的體積,隨水溶液一同進入煤體內(nèi)部。在干燥過程中,水分通過蒸發(fā)作用排出煤體,而氣潤濕反轉(zhuǎn)劑分子則滯留在煤體內(nèi)部,進而減小甲烷分子的吸附空間;另一方面,氣潤濕反轉(zhuǎn)劑具有低表面張力的特性,在吸附在煤體內(nèi)部孔隙裂隙的表面,降低其表面自由能,減小對甲烷分子的吸附能力,進而使得吸附量下降。