合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 旋轉液滴法測量和計算界面張力的方法
> 基于陰離子?非離子型表面活性劑復配最佳強化潤濕高效驅油體系——結果與討論、結論
> 我國地表水優(yōu)良比例已接近發(fā)達國家水平
> 如何降低水的表面張力:實驗室技術人員的專業(yè)指南
> Langmuir-Blodgett法制備環(huán)糊精單分子或多分子層膜
> 粘度、稠度和表面張力的共同點及在日常生活中的應用
> 烷基糖苷聚氧丙烯醚制備過程、表面張力、泡沫去污乳化性能測定——摘要、實驗
> 內分泌物在膠束中的增溶作用——結論、致謝!
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
> 接觸角遲滯時氣~液界面張力的溫度敏感性對液滴蒸發(fā)過程的影響——理論模型及計算方法
推薦新聞Info
-
> 新工藝提升葉黃素和玉米黃素聯(lián)產(chǎn)的塔式萃取效率
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關系(二)
> 界面張力γ、潤濕角θ與泥頁巖孔半徑r關系(一)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(二)
> 不同溫度壓力下CO2和混合烷烴的界面張力測定(一)
> 鹽水上下一樣咸嗎為什么?芬蘭Kibron公司表面張力儀揭曉答案
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(三)
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(二)
> 溫度及壓強對CO2-NaCl鹽水系統(tǒng)界面張力的影響(一)
> 表面張力儀分析生物表面活性劑對菲、1-硝基萘的增溶與洗脫效果和機制
激光釬涂金剛石的涂層形成與表面張力有何關系(一)
來源:焊接學報 瀏覽 943 次 發(fā)布時間:2024-09-05
激光釬焊技術具有光斑直徑小,能量密度高,便于局部加熱且熱影響區(qū)小的特點,近年來在金剛石工具焊接領域得到大量應用。現(xiàn)有研究表明,采用激光熱源可以實現(xiàn)金剛石的釬焊,且大多聚焦于金剛石界面組織與力學性能的研究。細粒度金剛石/45鋼基體的激光釬焊工藝試驗的結果表明,工藝參數(shù)是獲得可靠焊接的關鍵。李時春等人研究了激光釬焊多層金剛石磨粒Ni/Cr合金成形工藝,結果獲得了優(yōu)化的工藝參數(shù)。Daniel等人使用鎳基釬料激光釬焊金剛石,結果表明,在連接界面處未發(fā)現(xiàn)碳化物,并為了提高結合強度,圍繞外加輔助場焊接開展大量研究,用于提高激光釬焊強度。李晉禹等人采用Ni/Cr合金對金剛石開展激光釬焊試驗,結果表明,經(jīng)過超聲輔助激光釬焊,金剛石表層生成Cr3C2和Cr7C3,即超聲波高頻振動對界面反應有明顯促進作用,進而生成含碳量低的Cr7C3.采用金剛石激光/超聲耦合釬焊,通過將超聲效應引入釬焊,在液態(tài)熔池中產(chǎn)生空化和聲流等效應,縮短了界面反應時間。產(chǎn)生了Cr7C3,也就證明了超聲波對釬料界面反應有明顯的激發(fā)作用。激光釬涂金剛石是近年來逐漸興起的耐磨新技術,與傳統(tǒng)的激光釬焊金剛石相比,金剛石釬涂層由多層金剛石組成,這與早期的單層金剛石工具有很大的不同。
前期開展了激光釬涂金剛石技術研究,分析了激光功率和掃描速率對涂層微觀組織與力學性能的影響。從現(xiàn)有研究來看,已有的激光釬涂金剛石研究大多數(shù)集中于金剛石/釬料合金界面的組織演變和單層金剛石工具的機械加工性能方面,在釬涂層的成形過程方面尚未進行深入的研究工作。前期研究發(fā)現(xiàn),在激光釬涂金剛石過程中,金剛石易于向表面聚集,這對涂層的整體性能提升將會產(chǎn)生極大的影響,因此需要針對涂層的成形行為及其機理方面進行深入的研究,進一步提升涂層的耐磨性能。文中采用BNi-2合金作為釬料,利用光纖激光在65Mn鋼基體上制備金剛石涂層,并利用高速攝影技術觀察金剛石激光釬涂過程中,鎳基粉末形成涂層和金剛石遷移全過程,分析釬涂層的成形行為及其機理,并討論激光釬涂金剛石的能量轉換與傳遞路徑,以期為激光釬涂金剛石的工程應用提供數(shù)據(jù)支撐。
1.試驗方法
金剛石磨粒的抗壓和耐磨性能與其自身品級有關,精選河南黃河旋風股份有限公司晶形完整、強韌度好、無缺陷的高品級HSD90型人造金剛石,圖1為金剛石和BNi-2釬料粉的形貌,其中金剛石的原始形貌如圖1a所示,所用粒度為35目——40目。釬涂試驗前,利用角磨機或噴砂機清理基材表面,然后利用丙酮進行超聲波清洗30 min,以避免試驗過程雜質干擾,保證金剛石磨粒的透光性。釬涂試驗基材為65Mn鋼,激光釬涂試樣尺寸為200 mm×100 mm×10 mm.釬料合金既要潤濕金剛石和鋼基材,形成冶金結合,又要兼顧耐磨性,與涂層硬質顆粒耐磨性能匹配。選用釬料合金為200目NiCrSiB(Ni82Cr7Si4.5B3.1Fe3,后文簡稱BNi-2)釬料,形貌如圖1b所示。BNi-2釬料具有耐磨性好、成本低等優(yōu)點,合金中Cr元素可大幅提高釬料/金剛石界面結合強度,B元素和Si元素的添加降低了釬料熔點,有助于減少金剛石熱損傷。
圖1金剛石和BNi-2釬料粉形貌
激光釬涂是利用激光作為熱源使釬料層熔化,進而潤濕并連接金剛石與基材的工藝,其原理如圖2所示。與傳統(tǒng)真空釬涂工藝相比,激光釬涂工藝可顯著降低涂層能量輸入,大大縮短熱循環(huán)周期,具有非常好的結構和工藝適應性。文中激光釬涂試驗系統(tǒng)包括功率為6 kW的LYS-6000-ST2型光纖激光設備和AcutEye型庫卡軌道機器人。分別對釬料涂層和釬料/金剛石涂層進行激光釬涂試驗。金剛石釬涂試驗時,首先將BNi-2釬料鋪在65Mn基板上,粉末厚度為0.5 mm,然后在BNi-2釬料層上沉積金剛石顆粒,隨后在金剛石表面再預置一層0.5mm的粉末釬料。首先,預置1 mm厚度的釬料合金粉末層,然后進行釬涂試驗,工藝參數(shù)如表1所示。試驗過程中,利用激光釬涂系統(tǒng)配備的高速攝像機觀察釬料層的熔化過程。使用Zeiss Smartzoom5型超景深顯微鏡對涂層形貌進行三維觀察和尺寸測量。通過Image-pro plus 6.0軟件對涂層超景深圖片色域進行調整,直至色域所覆蓋的區(qū)域為孔隙所占區(qū)域,測量方式選擇Per area(單位面積)。
圖2激光釬涂示意圖
表1激光釬涂工藝參數(shù)